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Abstract— The parametric adaptive matched filter (PAMF)
detector for space-time adaptive processing (STAP) detection
is re-examined in this paper. Originally, the PAMF detector
was introduced by using a multichannel autoregressive (AR)
parametric model for the disturbance signal in STAP detection.
While the parametric approach brings in benefits such as
significantly reduced training and computational requirements as
compared with fully adaptive STAP detectors, the PAMF detector
as a reduced-dimensional solution remains unclear. This paper
employs the conjugate-gradient (CG) algorithm to solve the linear
prediction problem arising in the PAMF detector. It is shown that
CG yields not only a new computationally efficient implementa-
tion of the PAMF detector, but it also offers new perspectives of
PAMF as a reduced-rank subspace detector. The CG algorithm
is first introduced to provide alternative implementations for the
matched filter (MF) and parametric matched filter (PMF) when
the covariance matrix of the disturbance signal is known. It is
then extended to the adaptive case where the covariance matrix is
estimated from training data. Important issues such as unknown
model order and convergence rate are discussed. Performance
of the proposed CG-PAMF detector is examined by using the
KASSPER and other computer generated data.

I. INTRODUCTION

This paper is concerned with a multichannel signal detection
problem frequently encountered in phased-array radars and
many other applications. With extra spatial information pro-
vided by multiple sensors, higher performance of signal detec-
tion can be achieved (than a single-sensor system), especially
in detection of signals buried in a background of directional
jammers and space-time correlated clutter.

A widely explored technology for multichannel signal de-
tection is space-time adaptive processing (STAP) [1], first
proposed by Brennan, Reed and Mallett [2]. Most STAP-based
methods, such as the adaptive matched filter (AMF) [3] and
Kelly’s generalized likelihood ratio test (GLRT) [4], need to
invert a large space-time covariance matrix. These methods
require not only a large number of independent, identically
distributed, signal-free training data to estimate the matrix, but
they also incur a high computational cost for matrix estimation
and inversion.

A parametric STAP detector based on a multichannel
autoregressive (AR) disturbance model has been proposed
for airborne radar applications [5], [6] to reduce both the
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training data requirement and computation load. This method
is called the parametric adaptive matched filter (PAMF) [6].
While the PAMF detector has been found to yield excep-
tional performance with significantly reduced training and
computational requirement when compared with fully adaptive
STAP detectors, the connections between the PAMF and other
reduced-dimensional or partially adaptive STAP detectors [1],
which have similar benefits in training and complexity, remains
unclear.

This paper aims to provide some insights into this problem
by employing the conjugate-gradient (CG) method to solve
the linear prediction problem underlying the PAMF detector.
Our choice of the CG method is motivated by several factors.
First, the CG method is a computational efficient algorithm
to solve the linear prediction problem underlying the PAMF
detector. In particular for airborne radar applications, due to
an inherent structure of the disturbance covariance matrix, the
CG algorithm can usually achieve convergence using only a
few iterations, thus providing significant computational saving.
Second, as we will shown, the CG iterations naturally lead to
a subspace interpretation of the PAMF and offer a connection
to other reduced-rank STAP detectors.

II. DATA MODEL

Consider a received J-channel sequence {x(n)|n =
1, 2, · · · , N} corrupted by a space-time correlated disturbance
random process c(n). The detection problem involves the
following binary hypotheses:

H0 : x(n) = c(n)
H1 : x(n) = as(n) + c(n) (1)

where s(n) is a known J-channel signal and a its unknown
complex amplitude. All vectors in (1) are J × 1 vectors. For
convenience of later discussions, define the following vectors
in descending order: s = [sT (N), sT (N − 1), · · · , sT (1)]T ,
c = [cT (N), cT (N −1), · · · , cT (1)]T , x = [xT (N),xT (N −
1), · · · ,xT (1)]T . It is standard to assume that the disturbance
c is a Gaussian random vector with zero-mean and space-
time covariance matrix Rc ∈ C

JN×JN , while the signal
vector s(n) is deterministic (Swerling 0 target). Based on these
assumptions, x ∼ CN (as,Rc), where a = 0 under H0 and
a �= 0 under H1.
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In STAP, the signal s is known as the space-time steering
vector. For a side-looking uniform linear array (ULA), s is
given by

s = st ⊗ ss (2)

where st = (1/
√

N)[ei2π(N−1)fd , · · · , ei2πfd , 1]T is the tem-
poral steering vector with a normalized Doppler frequency
fd, ss = (1/

√
J)[ei2π(N−1)fs , · · · , ei2πfs , 1]T is the spatial

steering vector with a normalized spatial frequency fs, and
⊗ denotes the Kronecker product. Practically, the true distur-
bance covariance matrix Rc is unknown, and often an estimate
can be obtained from the secondary data:

R̂c =
1
K

K∑
k=1

ckcH
k (3)

where ck, k = 1, 2 · · · ,K, denote the secondary data vectors.
According to the well-known “RMB” rule [7], we need K ≥
2JN−3 so that the average output signal-to-interference-plus-
noise ratio (SINR) loss caused by covariance estimation error
is less than 3dB. Detectors with an estimated covariance matrix
are often called adaptive methods.

III. MF AND PMF

Assuming a known Rc, the matched filter (MF) is obtained
by maximizing the output SINR of a linear receiver or the
generalized likelihood ratio (GLR). The test is given by (e.g.,
[3]):

|sHR−1
c x|2

sHR−1
c s

H1
≷
H0

ηMF (4)

where ηMF is the threshold of MF. The performance of this
test is regarded as a benchmark for all linear tests.

MF can also be represented by using a structure of temporal
whitening cascaded with spatial whitening which comes from
a block LDU decomposition of the disturbance covariance
matrix [6]. This form of MF is given by

|(Q−1/2L−1s)H(Q−1/2ε)|2
(Q−1/2L−1s)H(Q−1/2L−1s)

=
|s̃Hν|2
s̃H s̃

H1
≷
H0

ηMF (5)

where Q ∈ C
JN×JN is a block-diagonal matrix with Her-

mitian matrices Q(n), n = 1, 2, · · · , N , along the main block
diagonal, and L ∈ C

JN×JN is a lower block-triangular matrix
with J × J identity matrices along the main block diagonal.
Both L and Q come from a block LDU decomposition of the
disturbance covariance matrix Rc = LQLH . Finally,

ε(n) = x(n) −
(n−1)∑
p=1

AH
p (n)x(n − p) (6)

ν(n) = Q−1/2(n)ε(n) (7)

s̃(n) = Q−1/2(n)

⎡
⎣s(n) −

(n−1)∑
p=1

AH
p (n)s(n − p)

⎤
⎦ (8)

where AH
p (n) ∈ C

J×J is a block element of L−1 located at
the (n − p)th block column and the nth block row.

If the disturbance c(n) is stationary in time, the MF can be
simplified. A parametric matched filter (PMF) was introduced
in [6] by modeling the disturbance as a stationary P th-order
multichannel autoregressive (AR) process. Specifically,

c(n) =
P∑

p=1

AH
p c(n − p) + εP (n) (9)

where AH
p , p = 1, 2, · · · , P , are the matrices of the AR

coefficients, and εP (n) is the temporally white noise with a
spatial covariance matrix QP . The PMF test is given by [6]

|∑N
n=P+1 s̃H

P (n)νP (n)|2∑N
n=P+1 s̃H

P (n)s̃P (n)

H1
≷
H0

ηPMF (10)

where νP (n) = Q
−1/2
P εP (n) and

s̃P (n) = Q
−1/2
P

[
s(n) −

P∑
p=1

AH
p s(n − p)

]
(11)

for n = P + 1, · · · , N . In practice, the model order P and
the AR coefficients {Ap} are estimated from the secondary
data and/or primary data. Different estimators lead to different
versions of the PAMF detector [6], [8].

IV. CG-MF AND CG-PMF

In this section, we discuss alternative implementations of the
MF and PMF via the CG algorithm. The resulting detectors are
referred to as the CG-MF and CG-PMF detectors, respectively,
for brevity. We start from the CG-MF, which also sets the basis
for the CG-PMF. The latter, assuming temporally stationary
disturbance, is a computationally simplified version of the CG-
MF. The link between the PMF and CG as developed in the
sequel reveals the PMF as a reduced-dimensional subspace de-
tector. In this section, we assume knowledge of the covariance
matrix of the disturbance signal. An adaptive version of the
CG-PMF (i.e., CG-PAMF) is discussed in Section V.

A. Conjugate-Gradient MF

The MF detector, as shown in Section III, can be derived
from a time-varying linear prediction process. Specifically,
consider the problem of linearly predicting the nth sample
x(n) under H0 from all prior received samples x(n−1),x(n−
2), . . . ,x(1) (cf. (9))

x(n) = BH(n)y(n) + ε(n) (12)

where B(n) = [AH
1 (n),AH

2 (n), · · · ,AH
n−1(n)]H =

[b1(n), b2(n), · · · , bJ(n)] ∈ C
J(n−1)×J denotes the (n − 1)-

st order time-varying multichannel linear prediction filter,
and y(n) = [yn(1), yn(2), · · · , yn(J(n − 1)]T = [xT (n −
1),xT (n − 2), · · · ,xT (1)]T contains all n − 1 previously
received data vectors. It is noted that the above time-varying
linear predictor grows in its filter order or size with n. The
multichannel linear predictor is equivalent to J scalar linear
predictors:

xj(n) = bH
j (n)y(n) + εj(n), j = 1, 2, · · · , J (13)
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The optimum linear predictor can be obtained by solving the
Wiener-Hopf equations:

Ryy(n)bj(n) = rj(n), j = 1, 2, · · · , J (14)

where Ryy(n) = E[y(n)yH(n)] ∈ C
J(n−1)×J(n−1) and

rj(n) = E[y(n)x∗
j (n)] ∈ C

J(n−1)×1. Again, note that the
size of the Wiener-Hopf equation grows with n.

To obtain a temporally whitened sequence ε(n) for MF
detection (cf. (6)), the above linear prediction process has to
be performed multiple times, starting from n = 2 to n = N .
For each n, we need solve a Wiener-Hopf equation of the
form (14). While there are various solvers to the linear Wiener-
Hopf equation, we consider using the conjugate gradient (CG)
method, which has several properties such as fast convergence
and direct link to the Krylov subspace [9]. Additional remarks
on such aspects are provided shortly.

The recursive procedure involved for the determination of
the linear predictors is described as follows.

for n = 2 to N do
for j = 1 to J do

Initialization. Initialize the conjugate-direction vector
d1,j(n), gradient vector γ1,j(n), step size α1,j(n) and
initial solution b1,j(n):

d1,j(n) = −γ1,j(n) = rj(n) (15)

α1,j(n) =
‖γ1,j(n)‖2

dH
1,j(n)Ryy(n)d1,j(n)

(16)

b1,j(n) = 0. (17)

for k = 2, 3, · · · , till convergence (k ≤ J(n − 1)) do
Update the gradient vector γk,j :

γk,j(n) = γk−1,j(n)+αk−1,j(n)Ryy(n)dk−1,j(n)
(18)

Update the conjugate-direction vector dk,j :

dk,j(n) = dk−1,j(n)
‖γk,j(n)‖2

‖γk−1,j(n)‖2
−γk,j(n) (19)

Update the step size αk,j :

αk,j(n) = α∗
k,j(n) =

‖γk,j(n)‖2

dH
k,j(n)Ryy(n)dk,j(n)

(20)
Update the solution bk,j :

bk,j(n) = bk−1,j(n) + αk,j(n)dk,j(n) (21)

end for
end for

end for
Let B(n) be the multichannel linear predictor formed from

bk,j after convergence. Then, B(n) can be used to whiten
x(n) to produce a temporally whitened sequence ε(n). The
spatial covariance matrix Q(n) of ε(n) is given by

Q(n) = E[ε(n)εH(n)] = Rxx(n) − BH(n)Ryx(n)
−RH

yx(n)B(n) + BH(n)Ryy(n)B(n) (22)

)(,)1( njJn

xj(n)

 

)(),1( nH
jnJD

 

yn(1)

+
-

j(n))(,1 nj

yn(2)

yn(J(n-1))

)(,2 nj

Fig. 1. Time-varying linear prediction in the conjugate-gradient MF detector.

where Rxx(n) = E[x(n)xH(n)] ∈ C
J×J , and Ryx(n) =

E[y(n)xH(n)] ∈ C
J(n−1)×J , which can be used for further

spatial whitening.
Fig. 1 depicts the CG-MF detector that produces the n-th

sample of the temporally whitened sequence εj(n) for the j-
th channel, where Dk,j(n) = [d1,j(n),d2,j(n), · · · ,dk,j(n)]
is the conjugate-direction matrix. CG iterations lead to a set
of linearly independent vectors d1,j(n), . . . ,dk,j(n) that are
conjugate orthogonal, i.e., dH

k,j(n)Ryy(n)dl,j(n) = 0 for k �=
l. The output of the kth iteration is given by

bk,j(n) =
k∑

m=1

αm,j(n)dm,j(n) (23)

which is a vector in the k-dimensional vector space spanned by
the conjugate-direction vectors {dm,j(n),m = 1, 2, · · · , k}.
The iterative procedure for the prediction of the n-th sample
xj(n), which involves a J(n − 1)-st order linear predictor,
converges after at most J(n− 1) iterations. The final solution
bj(n) lies in a J(n − 1)-dimensional vector space.

B. Conjugate-Gradient PMF

If the disturbance signal can be approximated as a tempo-
rally wide-sense stationary (WSS) multichannel AR process,
the linear prediction problem of the previous subsection can be
significantly simplified. Specifically, suppose the disturbance
is an AR(P ) process with model order P . In this case, the
optimum linear predictor for the n-th sample x(n) requires
only P most recently received samples (as opposed to all past
samples) and the prediction filter is time-invariant with a fixed
size (as opposed to time-varying with a growing size):

x(n) = BHyP (n) + εP (n) (24)

where the fixed P -th order linear predictor B =
[AH

1 ,AH
2 , · · · ,AH

P ]H = [b1, b2, · · · , bJ ] ∈ C
JP×J is

composed of the AR coefficient matrices {AH
p } (cf. (9)),

yP (n) = [yn(1), yn(2), · · · , yn(JP )]T = [xT (n−1),xT (n−
2), · · · ,xT (n − P )]T denotes the regression data vector,
and n > P . Again, it is convenient to express the above
multichannel linear predictor as J scalar linear predictors:

xj(n) = bH
j yP (n) + εP,j(n), j = 1, 2, · · · , J (25)

The structure of temporally whitening via linear prediction for
the PMF detector is shown in Fig. 2.
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xj(n)

yn(1)

+
-

P,j(n)

yn(2)

yn(JP)

Fig. 2. Time-invariant linear prediction in the conjugate-gradient PMF
detector.

The solution to the scalar linear prediction problem can be
obtained by solving the following Wiener-Hopf equation

Ryybj = rj , j = 1, 2, · · · , J (26)

where Ryy = E[yP (n)yH
P (n)] ∈ C

JP×JP and rj =
E[yP (n)x∗

j (n)] ∈ C
JP×1. It should be noted that unlike the

MF detector, the above Wiener-Hopf is time-invariant, has a
fixed size, and needs to be solved only once. The resulting
solution bj can be used to whiten the entire received signal
x(n) for n > P . The CG algorithm can also be applied
to solve (26), and the resulting detector is referred to as
the CG-PMF detector. Since only one fixed-sized Wiener-
Hopf equation needs to be solved, the CG-PMF detector is
computationally much simpler. Specifically, the outer loop for
varying n as discussed in Section IV-A varnishes, and only
the conjugate-gradient processing with n = P + 1 is needed.

Remark: The iterative procedure of CG converges after at
most JP iterations for the CG-PMF. As a result, the final
solution bj lies in a JP -dimensional vector space spanned
by the conjugate direction vectors dk,j , k = 1, 2, . . . , JP ,
or equivalently, the JP -dimensional Krylov subspace [9]:
K(rj ,Ryy, JP ) = span

{
rj ,Ryyrj , · · · ,RJP−1

yy rj

}
. This

shows that the PMF is a reduced JP -dimensional solution, as
opposed to the full JN -dimensional MF detector. Finally, it
is noted that if the disturbance signal is an AR(P ) process,
both the CG procedures for the MF (14) and for the PMF
(26) converge to the same Wiener solution with bj(n) =
[bT

j , 0T
J(n−1−P )×1]

T , for n > P .

C. Convergence in Airborne Radar Applications

One important property of the CG algorithm is its fast
convergence. In general, it takes no more than JP iterations to
solve the linear equation (26) [9]. Even faster convergence is
possible if the covariance matrix of the disturbance has some
specific structure. In particular, if the covariance matrix is a
rank-rc correction of an identity matrix: Ryy = Ri + σ2

n I ,
where Ri is a rank-rc positive semi-definite matrix, then the
CG algorithms converges in at most rc + 1 iterations [9].

In airborne radar applications, the disturbance covariance
matrix may consist of two components, namely a low-rank Ri

due to the clutter and jamming and a scaled identity σ2
n I due

to the white noise, where σ2
n denotes the noise variance. The

rank rc is typically much smaller than the joint spatio-temporal
dimension JN . Specifically, if the disturbance is primarily

due to ground clutter and thermal noise, then according to
Brennan’s rule [2], the rank of the clutter covariance matrix
for the full-dimensional MF is approximately

rc,full ≈ �J + (N − 1)β� (27)

where β = 2vgTr/d, vg is the platform velocity, Tr is the
pulse repetition period, d is the antenna element spacing, and
�·� rounds a real-valued number towards infinity. Likewise,
the rank of the disturbance covariance matrix for the PMF
detector can be approximated as

rc ≈ �J + (P − 1)β� (28)

The smaller rank rc is due to the fact that the disturbance
covariance matrix is formed over P pulses, which is sufficient
for the reduced-dimensional PMF detector due to the under-
lying AR(P ) model. Meanwhile, the space-time disturbance
covariance matrix for the full-dimensional MF detector is
formed over N (the entire number of) pulses. As such, the
PMF can benefit more from the fast convergence property of
the CG algorithm.

V. RECURSIVE CONJUGATIVE-GRADIENT PAMF

The CG-PMF algorithm is now extended to the adaptive
case when both the covariance matrix and the AR model order
P are unknown. The resulting detector is referred to as the CG-
PAMF detector. Since the true model order P is unknown, we
need an upper bound P̄ . One such bound for STAP detection
is considered in [6]:

P̄ = max
{⌊

3
√

N/J
⌋}

(29)

where ·� rounds a positive number towards zero. The ex-
tension of CG-PMF involves i) replacing the true covariance
matrices with estimates obtained from the secondary data;
and ii) integrating some model order selection criterion with
conjugate-gradient iterations. In the sequel, we use the general-
ized Akaike information criterion (GAIC) [10], [11] for model
order detection. The CG-PAMF detector is summarized next.

• Step 1: Estimate the disturbance covariance matrices from
the training data via temporal and range averaging:

R̂
(P̄ )

yy =

⎡
⎢⎣

R̂xx(0) · · · R̂xx(P̄ − 1)
...

. . .
...

R̂xx(1 − P̄ ) · · · R̂xx(0)

⎤
⎥⎦ (30)

R̂
(P̄ )

yx =

⎡
⎢⎣

R̂xx(−1)
...

R̂xx(−P̄ )

⎤
⎥⎦ (31)

where the sub-matrices are given by

R̂
H

xx(m) =
1

NK

K∑
k=1

N−m∑
l=1

xk(l + m)xH
k (l) (32)

K is the number of training data vectors and P̄ is
determined by (29).
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• Step 2: Set the order of the AR process to p = 1 and

initialize the AR coefficients B̂
(p)

0 = 0J .

• Step 3: Use the CG algorithm to solve R̂
(p)

yyB̂
(p)

= R̂
(p)

yx

until convergence.

• Step 4: Compute Q̂
(p)

as the maximum-likelihood esti-
mate of Q [8].

Q̂
(p)

= R̂xx(0) − B̂
(p) H

R̂
(p)

yx (33)

• Step 5: Compute the GAIC criterion which is given by

G(p) = V (p) + W (p) (34)

where

V (p) = JK(N − p)ln(eπ) + K(N − p)ln|Q̂(p)| (35)

W (p) = 2cJ2pln(ln(K(N − p))) (36)

where c ≥ 1 is a parameter of user choice.
• Step 6: If 1 < p ≤ Pmax, compare G(p) with G(p − 1).

If G(p) ≥ G(p − 1), set P̂ = p − 1 and exit; otherwise

increase p = p + 1, set B̂
(p+1)

0 = [B̂
(p) H

, 0J×J ]H , and
return to Step 3.

To speed up the convergence rate, the final solution from
the previous iteration (in p) is used as an initial value of
the current iteration. This is because the previous solution

B̂
(p)

lies in a subspace of the current solution B̂
(p+1)

, and
therefore fewer iterations are needed for the convergence of
current CG processing. Finally if the disturbance is an AR(P )
process, then going beyond P iterations does not significantly

change the result. For example, the solution B̂
(P+1)

0 is close

to [B̂
(P ) H

, 0J×J ]H , a zero-padded version of the solution
obtained in the previous iteration.

VI. NUMERICAL RESULTS

First, we examine the performance of several implementa-
tions of the PMF detector by using simulated data with AR
disturbances. Specifically, the disturbance is an AR(2) process
with J = 4 elements and N = 64 pulses. All PMF detectors
have knowledge of the exact disturbance covariance matrix;
however, they use different approaches to compute the linear
predictor. Specifically, we consider the DMI-PMF, which uses
direct matrix inverse to solve the Wiener-Hopf equation, and
the CG-PMF as discussed in Section IV-B. In addition, two
cases are considered for CG-PMF, one with knowledge of the
AR model order P and the other has only an upperbound P̄ =
3. For the latter, we examine the performance of a truncated
solution, and the detector is denoted as “CG-PMF (Truncated
B)”. Specifically, the truncated solution is obtained by running
the conjugate-gradient method with 8 iterations, which yields
an estimate B(2) with JP̄ = 12 rows, and discarding the last
4 rows. The simulation used 20000 independent Monte Carlo
data realizations, and a threshold is determined to provide a
false alarm rate Pfa = 0.01. The numerical results are shown
in Fig. 3. Interestingly, all 3 implementations yield nearly an
identical detection performance.
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Fig. 3. Probability of detection versus SINR of PMF for simulated data(J =
4; N = 64; P = 2)
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Fig. 4. Probability of detection versus SINR of PAMF for simulated
data(K = 16; J = 4; N = 64; P = 2; P̄ = 3)

Second, we consider the adaptive PAMF detector, for which
the disturbance covariance matrix is unknown. Similar to
the PMF detector, we compare three implementations of the
PAMF detector, which are referred to as the DMI-PAMF,
CG-PAMF, and CG-PAMF (Truncated B). For the truncated
implementation, we again assume only an upperbound P̄ is
known and the truncated solution is obtained similarly as for
PMF. The disturbance is also an AR(2) signal, whose distur-
bance covariance matrix is estimated from K = 16 target-free
training data vectors, and the AR coefficients are estimated
based on the estimated disturbance covariance matrix. The
numerical results are shown in Fig. 4 for P̄ = 3. It is again
observed that all 3 implementations yield nearly an identical
detection performance.

Finally the performance of the recursive CG-PAMF with
an unknown disturbance AR order is considered. Both the
simulated data and KASSPER 2002 data set are adopted.
The simulated disturbance is the same as in the previous
examples. Meanwhile, the KASSPER data set is generated
by considering practical airborne radar parameters and issues
found in a real-world clutter environment [12]. Specifically,
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Fig. 5. Probability of detection versus SINR for Simulated data(K = 4;
J = 4; N = 64; P = 2; P̄ = 6)

the simulated airborne radar platform travels at a speed of
100 m/s with a 3◦ crab angle. The radar carrier frequency
is 1240 MHz. The horizontal 11 antenna elements form a
ULA with a spacing of 0.1092m between adjacent elements,
and the transmit array is uniformly weighted and phased to
steer the mainbeam to 195◦. The pulse repetition frequency
is 1984 Hz and a coherent processing interval contains 32
pulses. Here we use only the outputs of the first 8 elements
for processing. The numerical results are shown as Fig. 5
and Fig. 6, in which RCG-PAMF (unknown P ) represents
the result of the recursive CG-PAMF under the condition of
unknown P and R. An upper bound P̄ for the model order
is calculated by (29). It is seen that the performance of the
recursive CG-PAMF is nearly identical to that of CG-PAMF
with known P (for simulated data) or a pre-selected P = 2
(for KASSPER data). Using the relevant parameters of the
KASSPER data, we have β = 2vgTr/d = 0.923. It follows
that for J = 8 elements, the maximum number of conjugate-
gradient iterations of the CG-PAMF or RCG-PAMF for a given
model order p is rcp + 1 = �8.077 + 0.923p�. For example,
the maximum numbers of CG iterations for p = 2 is 10 due
to the low-rank structure of the clutter, whereas without such
a structure, it would require pJ = 16 iterations for the CG to
converge.

VII. CONCLUSION

The CG algorithm was employed to solve the linear predic-
tion problem underlying the PAMF detector. It is shown that
this leads to not only new efficient implementations, but also
new insights of the PAMF as a reduced-dimensional subspace
detector.
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